Theoretical Biophysics

Quantum Theory and Molecular Dynamics

Pawel Romanczuk
WS 2017/18

http://llab.romanczuk.de/teaching/



Introduction

Two pillars of classical theoretical physics
at the begin of 20th century:

Matter Radiation

particles / trajectories waves / fields

 classical mechanics « classical electrodynamics
(Newton, Lagrange, Hamilton) (Maxwell, Faraday, Hertz,...)

» statistical mechanics
(Maxwell, Boltzmann,Gibbs,...)

 classical thermodynamics
(Carnot, Maxwell, Clausius, Gibbs,...)

However, more and more experimental observations
accumulated which could not be explained by these theories.



Quantum nature of radiation

particle-wave dualism

* not explainable by classical electrodynamics
e radiation — electromagnetic waves
* many experimental observations



Black body radiation
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Planck's law

Planck's theory describing
black body radiation (1900):

e phenomenological assumption — emission and
absorption of energy only possible in packets
(“gquanta”)

E,=nhyr n=1223,...
h=6,63-10"%%Js=4.14-10"1eVs



Radiant energy Emitted

Photoelectric effect th /

Experimental observations: Metal surface

* there exists a threshold frequency for
emission of electrons

 number of emitted electrons proportional to
the intensity of light

* kinetic energy of electrons proportional to
frequency of light but completely
Independent on intensity!
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Theoretical explanation by Einstein (1905)
- radiation consists of photons with energy

E = hy




Compton effect

X-ray scattering can be understood as AN = -
Inelastic collision of 'particles' (1923): \

« energy of photons: E =hv =pc
hv  h

* momentum of a photon: P = — — —
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Building blocks of matter

 Structure and stablility of 'fundamental’ units
of matter (atoms) can not be explained by
classical mechanics and electrodynamics.



'Planetary model' of an atom

Rutherford scattering (1911): > e
. al M u;e:.s\m}::dﬁﬂm
e radius of nucleus: R, ~ 10~ 4m I R
. -
e radius of atom —Lo)
(electron orbit): R, ~ 107 "m i

Classical electrodynamics — unstable configuration:

e accelerated charge (electron rotating around nucleus)
must radiate and lose energy

. classically predicted life times: 7 ~ 107 ''s




Spectral lines

e Spectral lines
(emission/absorption) -
Jfingerprints* of atoms and
molecules cannot be
explained by classical
electrodynamics

» only empirical formulas, e.qg.

for hydrogen Balmer/Rydberg:
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Bohr model

« atom model by Bohr (1913):
classical mechanics + additional
postulates
1) stable quantized orbits (radiation

free)
2) emission/absorption — electron
transitions between orbits

hv =AF=F, — F,,
— Balmer/Rydberg formula
e fails for more complicated atoms

(He)
« ad-hoc assumptions

n=3

n=2

n=1 M
. AE = hf
tsLe
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Matter Waves

 de Broglie hypothesis (1923/24).
particles (electrons, protons etc)
can be ascribed a wavelength
(frequency) following Planck/Einstein
formulae

h
p:mvzx E = hy

e combination with Bohrs first postulate
allows interpretation of quantized
orbits as standing waves.

Can we observe wave nature of
particles directly?
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Electrons as Waves

 de Broglie hypothesis was confirmed experimentally with
diffraction experiments in 1927 (Davisson/Germer, Thomson)
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Wave-particle dualism for radiation
and matter

 Bad news: both pillars of theoretical physics
affected

* Good news: similar phenomena & problems
— theoretical solution maybe also similar

Final outcome a single unifying theory for both
classical pillars: Quantum Theory (incl.
Quantum Field Theory)
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Correspondence principle

» All (microscopic) objects obey quantum mechanics

» But for large systems and/or high energies classical
mechanics & electrodynamics provide good
guantitative prediction

» Classical theories — limiting cases for large
systems (many coupled degrees of freedom) or
large quantum numbers (high energies)
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Quantum Biophysics

Quantum Biophysics (Molecular Quantum
Physics). Quantum approach to biophysical
systems and biomolecules.

Theoretical foundation for:
* biochemistry (quantum chemistry)

e quantitative methods (photophysics,
sSpectroscopy)

 biological function of quantum systems (e.g.

photosynthesis, enzymatic activity, etc)
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Postulates of Quantum Mechanics

 Fundamental assumptions

e Cannot be derived from some more basic
principles

 Whatever we do in quantum theory, must make
sense In the light of these postulates.
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1% Postulate — Quantum States

" The state of a system is fully described by its wave
function:

\Ij(rlar27 <. 7rN7t) — w(rlat)w(xéat)a .- 77D(I'Nat)

The wave function depends on the coordinates of all particles in
the system.

It is complex and not directly measurable
motivated by the wave-particle dualism

for non-interacting particles it can be decomposed into a product
of single particle functions:

\Ij(rlvr27 R 7rN7t) — w(rlat)¢<r27t)7 . w(rNat)
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Wave Functions

* Probabillistic interpretation: The square of the wave
function |y (r,t)|* is proportional to the probability to
find the particle in the time interval dt at position r+dr

As a consequence ¥ (r,t)
e has unique definition r,t — ¢(r, t)
 must be continuous

* must have a continuous first derivative
(Exception: points in space with infinite potential)

* must be quadratically integrable (in space - not time!)

/ 9(r, t)|*dr < oo
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2"Y Postulate: Observables

Each quantity A that can be “measured” is described
by linear, self-adjoint (hermitian) operator A:

Definition: A hermitian operator is an an operator A that is its
own hermitian (complex) conjugate.

At — A

An important consequence:

All eigenvalues of hermitian operator are real numbers.
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3" Postulate: Measurement results

n any measurement of the observable associated with
operator A, the only values that will be ever observed are the
eigenvalues a, which satisfy:

AU = qU

« analogy to linear algebra (!)
e real numbers (see previous postulate)

« values of dynamical variables can be quantized (discrete,
bound states), but also continuum of eigenvalues is
possible (unbound states).
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Quantum Measurements

If the system Is in a quantum state which is a pure
eigenstate of A with eigenvalue a then any measurement of
guantity A will yield the value a

An arbitrary (“mixed”) quantum state can be expressed as
linear superpositions of eigenstates:

b = zn:Cz\Ifz

The values c; will be measured with the probabillity |c,|?

A measurement of ¢, results in “collapse” of the wave
function onto the corresponding eigenstate V;

Measurement affects the system!
22



4" Postulate: Expectation value

If the system is described by a normalized wave function:
(0|0 — / A0 (v, )0 (r, 1) = / dr| U (r, )2 = 1
Q Q

Then the average of multiple measurements is given by the
expectation value:

(4) = (w

A

A\If>:/9dr\11*(r,t)A\I!(r,t)
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5" Postulate: Schrodinger Equation

- The state function of the system (wave function) evolves according
to the time dependent Schrodinger equation:

ih@tllf(rl, .« . ,I'N,t) — I:I\I/(I'l, c .. ,I'N,t)

. 2 K2 3
Hamilton operator: H = —5=A+V

— operator of the total energy of the system
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