Theoretical Biophysics

Quantum Theory and Molecular Dynamics

Pawel Romanczuk WS 2017/18

http://lab.romanczuk.de/teaching/

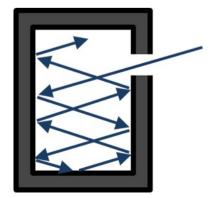
1

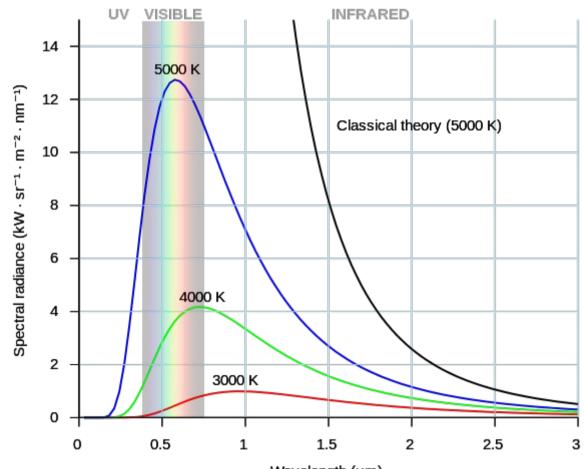
Introduction

Two pillars of classical theoretical physics at the begin of 20th century:

Matter	Radiation
particles / trajectories	waves / fields
 classical mechanics (Newton, Lagrange, Hamilton) statistical mechanics (Maxwell, Boltzmann,Gibbs,) classical thermodynamics (Carnot, Maxwell, Clausius, Gibbs,) 	 classical electrodynamics (Maxwell, Faraday, Hertz,)

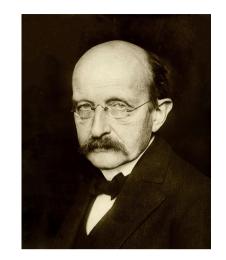
However, more and more experimental observations accumulated which could not be explained by these theories.


Quantum nature of radiation


particle-wave dualism

- not explainable by classical electrodynamics
- radiation → electromagnetic waves
- many experimental observations

Black body radiation



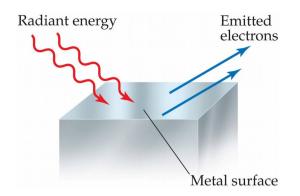
Wavelength (µm)

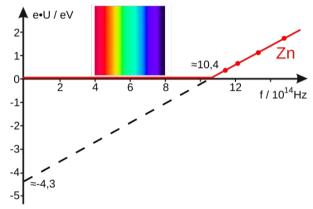
Planck's law

Planck's theory describing black body radiation (1900):

 phenomenological assumption → emission and absorption of energy only possible in packets ("quanta")

$$E_n = nh\nu$$
 $n = 1, 2, 3, ...$
 $h = 6, 63 \cdot 10^{-34} Js = 4.14 \cdot 10^{-15} eVs$

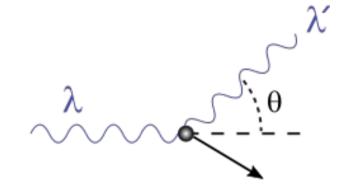

Photoelectric effect


Experimental observations:

- there exists a threshold frequency for emission of electrons
- number of emitted electrons proportional to the intensity of light
- kinetic energy of electrons proportional to frequency of light but completely independent on intensity!

Theoretical explanation by Einstein (1905) \rightarrow radiation consists of photons with energy

$$E = h\nu$$



Compton effect

X-ray scattering can be understood as inelastic collision of 'particles' (1923):

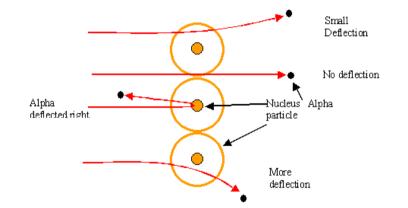
• energy of photons:

$$E = h\nu = pc$$

h

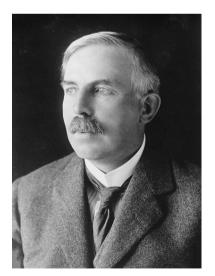
• momentum of a photon:
$$p = \frac{h\nu}{c}$$

Building blocks of matter


 Structure and stability of 'fundamental' units of matter (atoms) can not be explained by classical mechanics and electrodynamics.

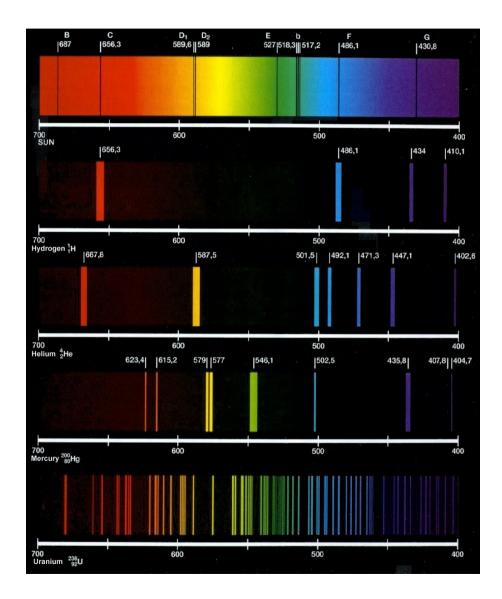
'Planetary model' of an atom

Rutherford scattering (1911):


- radius of nucleus: $R_n \approx 10^{-14} m$
- radius of atom (electron orbit): R_n

$$R_n \approx 10^{-10} m$$

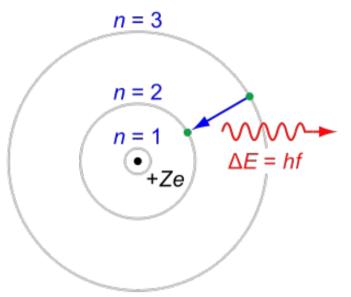
Classical electrodynamics \rightarrow unstable configuration:


- accelerated charge (electron rotating around nucleus) must radiate and lose energy
- classically predicted life times: $\tau \approx 10^{-11} s$

Spectral lines

- Spectral lines (emission/absorption) -"fingerprints" of atoms and molecules cannot be explained by classical electrodynamics
- only empirical formulas, e.g. for hydrogen Balmer/Rydberg:

$$\nu = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right)$$
$$n, m \in \mathbb{N}, \ n > m$$



Bohr model

- atom model by Bohr (1913): classical mechanics + additional postulates
 - 1) stable quantized orbits (radiation free)
 - 2) emission/absorption → electron transitions between orbits

 $h\nu = \Delta E = E_n - E_m$

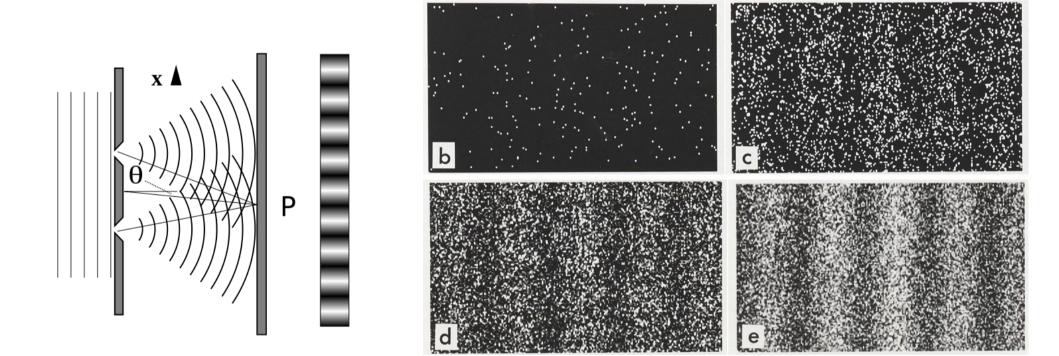
- → Balmer/Rydberg formula
- fails for more complicated atoms (He)
- ad-hoc assumptions

Matter Waves

 de Broglie hypothesis (1923/24): particles (electrons, protons etc) can be ascribed a wavelength (frequency) following Planck/Einstein formulae

$$p = mv = \frac{h}{\lambda}$$
 $E = h\nu$

 combination with Bohrs first postulate allows interpretation of quantized orbits as standing waves.


Can we observe wave nature of particles directly?

Electrons as Waves

• de Broglie hypothesis was confirmed experimentally with diffraction experiments in 1927 (Davisson/Germer, Thomson)

Wave-particle dualism for radiation and matter

- Bad news: both pillars of theoretical physics affected
- Good news: similar phenomena & problems
 → theoretical solution maybe also similar

Final outcome a single unifying theory for both classical pillars: **Quantum Theory** (incl. Quantum Field Theory)

Correspondence principle

- All (microscopic) objects obey quantum mechanics
- But for large systems and/or high energies classical mechanics & electrodynamics provide good quantitative prediction
- Classical theories → limiting cases for large systems (many coupled degrees of freedom) or large quantum numbers (high energies)

Quantum Biophysics

Quantum Biophysics (Molecular Quantum Physics): Quantum approach to biophysical systems and biomolecules.

Theoretical foundation for:

- biochemistry (quantum chemistry)
- quantitative methods (photophysics, spectroscopy)
- biological function of quantum systems (e.g. photosynthesis, enzymatic activity, etc)

Postulates of Quantum Mechanics

- Fundamental assumptions
- Cannot be derived from some more basic principles
- Whatever we do in quantum theory, must make sense in the light of these postulates.

1st Postulate – Quantum States

The state of a system is fully described by its **wave function**:

$$\Psi(\mathbf{r_1},\mathbf{r_2},\ldots,\mathbf{r_N},t)=\psi(\mathbf{r_1},t)\psi(\mathbf{r_2},t),\ldots\psi(\mathbf{r_N},t)$$

- The wave function depends on the coordinates of all particles in the system.
- it is complex and not directly measurable
- motivated by the wave-particle dualism
- for non-interacting particles it can be decomposed into a product of single particle functions:

$$\Psi(\mathbf{r_1},\mathbf{r_2},\ldots,\mathbf{r_N},t)=\psi(\mathbf{r_1},t)\psi(\mathbf{r_2},t),\ldots\psi(\mathbf{r_N},t)$$

Wave Functions

• Probabilistic interpretation: The square of the wave function $|\psi(\mathbf{r},t)|^2$ is proportional to the probability to find the particle in the time interval dt at position $\mathbf{r}+d\mathbf{r}$

As a consequence $\psi(\mathbf{r},t)$

- has unique definition $\mathbf{r},t \rightarrow \psi(\mathbf{r},t)$
- must be continuous
- must have a continuous first derivative (Exception: points in space with infinite potential)
- must be quadratically integrable (in space not time!)

$$\int_{\Omega} |\psi(\mathbf{r},t)|^2 d\mathbf{r} < \infty$$

2nd Postulate: Observables

Each quantity A that can be "measured" is described by linear, self-adjoint (hermitian) **operator** \hat{A} :

<u>Definition</u>: A hermitian operator is an an operator \hat{A} that is its own hermitian (complex) conjugate.

$$\hat{A}^{\dagger} = \hat{A}$$

An important consequence:

All eigenvalues of hermitian operator are real numbers.

3rd Postulate: Measurement results

In any measurement of the observable associated with operator \hat{A} , the only values that will be ever observed are the eigenvalues a, which satisfy:

$$\hat{A}\Psi = a\Psi$$

- analogy to linear algebra (!)
- real numbers (see previous postulate)
- values of dynamical variables can be quantized (discrete, bound states), but also continuum of eigenvalues is possible (unbound states).

Quantum Measurements

- If the system is in a quantum state which is a pure eigenstate of \hat{A} with eigenvalue *a* then any measurement of quantity *A* will yield the value *a*
- An arbitrary ("mixed") quantum state can be expressed as linear superpositions of eigenstates:

$$\Phi = \sum_{i}^{n} c_{i} \Psi_{i}$$

- The values c_i will be measured with the probability $|c_i|^2$
- A measurement of c_i results in "collapse" of the wave function onto the corresponding eigenstate Ψ_i

Measurement affects the system!

4th Postulate: Expectation value

If the system is described by a **normalized** wave function:

$$\langle \Psi | \Psi \rangle = \int_{\Omega} d\mathbf{r} \Psi^*(\mathbf{r}, t) \Psi(\mathbf{r}, t) = \int_{\Omega} d\mathbf{r} |\Psi(\mathbf{r}, t)|^2 = 1$$

Then the average of multiple measurements is given by the **expectation value**:

$$\langle A \rangle = \left\langle \Psi \middle| \hat{A} \Psi \right\rangle = \int_{\Omega} d\mathbf{r} \Psi^*(\mathbf{r}, t) \hat{A} \Psi(\mathbf{r}, t)$$

5th Postulate: Schrödinger Equation

The state function of the system (wave function) evolves according to the time dependent Schrödinger equation:

$$i\hbar\partial_t\Psi(\mathbf{r_1},\ldots,\mathbf{r_N},t) = \hat{H}\Psi(\mathbf{r_1},\ldots,\mathbf{r_N},t)$$
$$= -\frac{\hbar^2}{2m}\Delta\Psi(\mathbf{r_1},\ldots,\mathbf{r_N},t) + V\Psi(\mathbf{r_1},\ldots,\mathbf{r_N},t)$$

Hamilton operator:
$$\hat{H}=-rac{\hbar^2}{2m}\Delta+\hat{V}$$

 \rightarrow operator of the total energy of the system